Development of a radioimmunoassay for measuring 6-oxo-prostaglandin $F_{1\alpha}$

K.K. DIGHE, R.L. JONES & N.L. POYSER

Department of Pharmacology, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ.

6-oxo-PGF_{1a} (5 mg) was conjugated to 16.2 mg thyroglobulin by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in water at pH 5.5. Following the 5 h reaction, the solution was dialyzed. The retentate was dissolved in 0.03 M sodium carbonate solution, centrifuged (900 g for 20 min), and the supernatant withdrawn and lyophilized to produce the dried conjugate. By incorporating 3 μ Ci [³H]-prostaglandin F_{2a} (sp. act. 150 Ci/mmol; Amersham) into the conjugating reaction, it was calculated that 60 moles of prostaglandin were bound to 1 mole of thyroglobulin.

Conjugate (4 mg) was dissolved in 4 ml normal saline and emulsified with 4 ml Freund's complete adjuvant. Four rabbits were each immunized with 2 ml emulsified conjugate, injected intradermally at 50 sites. The rabbits were boosted at 6 weekly intervals with 2 ml emulsified conjugate, injected subcutaneously at 4 sites. 50 ml blood were collected 8 days after boosting, and the serum treated and stored, as described by Dighe, Emslie, Henderson, Rutherford & Simon (1975).

[3 H]-6-oxo $\bar{P}G\bar{F}_{1\alpha}$ (tracer) was synthesized by reacting 25 mCi octa-tritiated arachidonic acid (sp. act. 120 Ci/mmol; Amersham) with 200 mg sheep uterus microsomal enzyme preparation in 5 ml Krebs' solution (containing 1 mg/ml tryptophan and 10 μg/ml haemoglobin), aerated with 5% CO₂ in O₂, at 37°C for 60 minutes. The pH was then lowered to 4.5 and the prostaglandins extracted with ethyl acetate. The extract was evaporated to dryness, re-dissolved in 67% ethanol, washed with petroleum ether (b.p. 60-80°C), and taken to dryness again. The residue was further purified by straight-phase liquid-gel partition column chromatography (on Lipidex 1000 eluted with hexane, 1,2-dichloroethane, ethanol, acetic acid, 100:100:15:0.2), followed by reversed-phase high-performance liquid chromatography (on Partisil ODS eluted with acetonitrile, water, acetic acid, 40:60:0.1). The major radioactive substance isolated co-chromatographed with non-tritiated 6-oxo-PGF_{1a} on thin-layer chromatography using two solvent systems, FVI (Anderson, 1969) and 1a (Cottee, Flower, Moncada, Salmon & Vane, 1977).

Table 1 % Cross-reactivities of various prostaglandins with antiserum raised against 6-oxo-PGF, taken at 40% binding of tracer

	Rábbit No. 2	
	Bleed	Bleed
Prostaglandin	No. 2	No. 3
PGF ₂ _x	0.90	1.0
PGE ₂	1.2	0.76
PGD ₂	0.38	0.18
PGA ₂	0.05	0.08
TXB ₂	0.11	0.12
PGF ₁	0.36	0.35
PGE.	2.2	2.7
15-oxo-PGE	< 0.05	< 0.05
13,14-dihydro-15-oxo-PGE ₂	< 0.05	< 0.05
15-oxo-PGF ₂₄	< 0.05	< 0.05
13,14-dihydro-15-oxo-PGF ₂	<0.05	< 0.05

Dilution curves were set up using the serum and prepared tracer (30 pg; sp. act. 90–105 Ci/mmol). Serum from rabbit 2 (2nd and 3rd bleeds) produced 60% binding at 1/640 dilution, using the double-antibody method of separation. Good standard curves were obtained with these 2 antisera, the working range being 20 to 600 pg. Cross-reactivities are shown in Table 1. These 2 antisera are being developed for assaying endogenous 6-oxo-PGF_{1a}, and the rabbits boosted further hopefully to produce an antiserum with a higher titre.

6-oxo-PGF_{1a} was kindly supplied by ICI Pharmaceuticals Division, Cheshire. This work was supported by an MRC grant. The technical assistance of Mr C.G. Marr and Miss Agnes Pelanis is appreciated.

References

ANDERSEN, N.H. (1969). Preparative thin-layer and column chromatography of prostaglandins. *J. Lip. Res.*, 10, 316-319.

COTTEE, F., FLOWER, R.J., MONCADA, S., SALMON, J.A. & VANE, J.R. (1977). Synthesis of 6-keto-PGF_{1α} by ram seminal vesicle microsomes. *Prostaglandins*, 14, 413-423.

DIGHE, K.K., EMSLIE, H.A., HENDERSON, L.K., RUTHER-FORD, F. & SIMON, L. (1975). The development of antisera to prostaglandins B₂ and F_{2a} and their analysis using solid-phase and double antibody radioimmuno-assay methods. *Br. J. Pharmac.*, 55, 503-514.